2022 年度碳足迹核算报告

泰州市梅兰春酒厂有限公司 2023年3月20日

ı

目录

1.	编制依据	l
2.	基本情况	1
	2.1 单位概况	1
	2.2 生产情况	1
	2.2.1 产品名称及规模	1
	2.2.2 生产工艺流程	1
	2.2.3 主要设备一览表2	2
3.	核算边界	3
4.	碳足迹核算	1
	4.1活动数据	1
	4.1.1 原材料运输形成的碳足迹	1
	4.1.2 生产过程形成的碳足迹	1
	4.1.3 分销过程形成的碳足迹	<u>-</u>
	4.2 排放因子和计算系数数据	<u>-</u>
	4.3 碳足迹核算汇总	3
	4.3.1 原辅材料运输的碳足迹核算	3
	4.3.2 生产过程中形成的碳足迹核算	3
	4.3.3 产品分销形成的碳足迹核算	7
	4.3.4 碳足迹核算量汇总	7
5.	结果分析与评价	3
	5.1 碳足迹构成及影响因素分析	3
	5.2 产品碳足迹改善措施	ર

1.编制依据

根据《国家发展改革委关于组织开展重点企(事)业单位温室气体排放报告工作的通知(发改气候[2014]63号)》、《碳排放权交易管理暂行办法》等文件,遵照《温室气体产品碳足迹·量化与通报要求及指南》(ISO/TS14067:2013)、《食品、烟草及酒、饮料和精制茶企业温室气体排放核算方法与报告指南(试行)》、《商品和服务的生命周期温室气体排放评价规范》(PAS2050:2011)中的相关指南进行编制。

2.基本情况

2.1 单位概况

企业名称: 泰州市梅兰春酒厂有限公司

企业类型:有限责任公司

法定代表人: 刘秀兰

注册资本: 39350 万人民币

成立日期: 1998年5月14日

注册地址: 江苏省泰州市海陵区江州北路 889 号

经营范围: 生产加工白酒

2.2 生产情况

2.2.1 产品名称及规模

公司主营产品为芝麻香型系列白酒。2022 年,公司生产原酒 1120.231 吨。

2.2.2 生产工艺流程

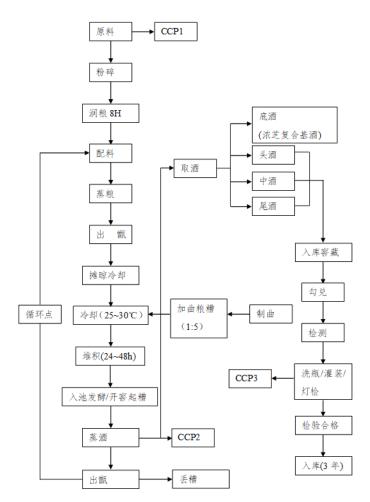


图 1 XX 生产工艺流程

2.2.3 主要设备一览表

表 1 主要设备一览表

序号	名称	厂家	现有台套数	备注
1	提升机	江苏牧羊集团有限公司	8	
2	螺旋输送机	江苏牧羊集团有限公司	7	
3	振动筛	南通粮食机械有限公司	4	
4	去石机	南通粮食机械有限公司	8	
5	气压紧辊垄谷机	浙江诸暨市粮工机械有限公司	4	
6	破碎机	无锡布勒机械制造有限公司	4	
7	配料绞龙	江苏牧羊集团有限公司	11	
8	混合机	江苏牧羊集团有限公司	2	
9	狼牙齿粉碎机	江苏牧羊集团有限公司	1	
10	锤片式粉碎机	江苏牧羊集团有限公司	1	
11	装甑机	普瑞特机械制造股份有限公司	4	
12	润粮翻拌机	广州广富食品化工装备有限公司	5	
13	粮糟冷却加曲机	广州广富食品化工装备有限公司	5	

序号	名称	厂家	现有台套数	备注
14	翻曲机	肇庆市京欧机械制造有限公司	4	
15	连续蒸煮系统	烟台良荣机械精业有限公司	1	
16	喂料机	烟台良荣机械精业有限公司	2	
17	酵母小罐及温控		1	
18	细菌小罐及温控	>r + + >⊠ + + + hn + ≠10	1	
19	酵母大罐及温控	江苏丰泽生物工程 设备制造有限公司	1	
20	细菌大罐及温控		1	
21	酵母细菌储罐		2	
22	种曲机	烟台良荣机械精业有限公司	2	
23	烘箱	上海林频仪器股份有限公司	2	
24	霉菌培养箱	上海智城分析仪器制造有限公司	2	
25	灌装生产线	沭阳科达轻机厂安丘/鼎正机械设备公司	2	

3.核算边界

产品碳足迹应包括三个部分: (1)原材料运输碳足迹; (2)产品生产碳足迹(包括生产过程中的废弃物碳足迹); (3)产品分配/销售过程碳足迹。

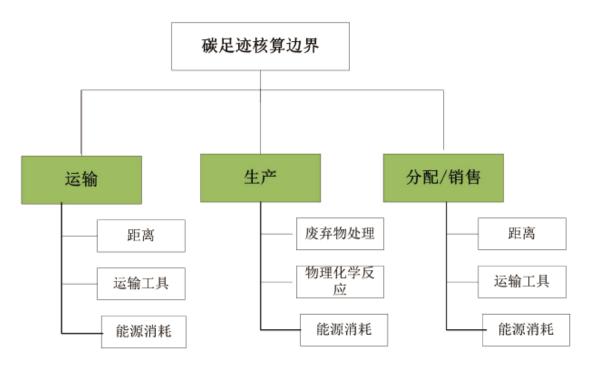


图 2 碳足迹核算边界

4.碳足迹核算

4.1 活动数据

4.1.1 原材料运输形成的碳足迹

公司生产过程中主要原辅材料包括小麦、玉米、高粱等,运输碳足迹主要为汽运,原材料产地、运输方式、运输里程如下表所示;在运输过程中消耗的汽油量估算如下:

序号	物料名称	产地	运输距离	运输方式	燃料类型	年耗量
1	小麦	泰州市	19 km	汽运	柴油	0.19t
2	玉米	江阴市	120 km	汽运	柴油	0.21t
3	大米	泰州市	34 km	汽运	柴油	0.04t
4	高粱	洮南市	1895 km	汽运	柴油	120. 27 t
5	小麦麸	兴化市	54 km	汽运	柴油	1.61t
6	豆粕	泰州市	38 km	汽运	柴油	0.04t
7	稻壳	泰州市	40 km	汽运	柴油	0.67t
8	陶瓷瓶、陶坛	景德镇市	570 km	汽运	柴油	0.09t

表 2 公司主要原材料供应信息一览表

	
± 2	
表 3	原材料运输能源消耗量

序号	燃料品种	年消耗量(吨)	低位发热量 (吉焦/吨)	备注
1	柴油	123.11	42.652	按照《重型商用车辆燃料消耗量限值》(GB30510-2018): 最大设计总质量 8.5t <gvw≤10.5t,燃料消耗18.3l 100km<="" td=""></gvw≤10.5t,燃料消耗18.3l>

4.1.2 生产过程形成的碳足迹

生产过程中形成的碳足迹包括天然气消耗碳足迹、电能消耗碳足迹等, 根据公司委托第三方机构编制的《2022 年度温室气体排放核查报告》,数据 统计如下:

表 4 天然气消耗统计表

报告主体名程	称: 泰州市梅兰春酒厂有	限公司
类型	消耗量(万 Nm³)	低位发热量(GJ/万 Nm³)
天然气	107.69	389.31

表 5 电力消耗统计表

报告主体名称: XX 有限公司				
	净购入量			
类型	净购入量	购入量	外供量	
	(兆瓦时) (兆瓦时) (兆瓦时)			
电力(华东地区电网)	1610.254	1610.254	0.0	

4.1.3 分销过程形成的碳足迹

分销运输主要运输方式为汽运,汽运主要通过厢式货车运输。据统计 2022 年度,公司共计 2000 余次发货信息,发货目的地遍及江苏省各个主要城市,据估算,总运输距离约 20 万公里。根据各类运输能耗情况,预计产品汽运柴油消耗量约 32 吨。

4.2 排放因子和计算系数数据

根据《食品、烟草及酒、饮料和精制茶企业温室气体排放核算方法与报告指南(试行)》和公司 2022 年度温室气体排放核查报告,得出碳足迹核算所需排放因子和计算系数如下:

表 6 电力排放因子

数据值	0.5703
数据项	净购入电力排放因子
单位	tCO ₂ /MWh
数据来源	《2022年度全国电网平均排放因子》

表 7 天然气单位热值含碳量和碳氧化率

	低位发热量	单位热值含碳量	碳氧化率
数值	389.31 GJ/万 Nm ³	0.0153tC/GJ	99%
数据来源	《食品、烟草及酒、饮料和精制茶企业温室气体排放核算方法与报告指南(试行		法与报告指南(试行)》

表 8 柴油单位热值含碳量和碳氧化率

	低位发热量	单位热值含碳量	碳氧化率
数值	42.652GJ/t	0.0202tC/GJ	98%
数据来源	《食品、烟草及酒、饮料和精制茶企业温室气体排放核算方法与报告指南(ì		法与报告指南(试行)》

4.3 碳足迹核算汇总

4.3.1 原辅材料运输的碳足迹核算

 E_{RMM} : 核算期内原材料运输产生的 CO_2 排放量,单位为吨(tCO_2)

NCV₁: 核算期内柴油平均低位发热量,单位为 GJ/t;

FC₁: 核算期内柴油消耗量,单位为吨

CC₁: 柴油的单位热值含碳量,单位为tC/GJ;

OF1: 柴油的碳氧化率,单位为%;

44/12: 二氧化碳与碳的数量换算

根据以上公式和原材料运输中的碳足迹活动数据及排放因子,核算结果如下:

低位发热量 单位热值含碳 碳氧化率 CO₂/C 折 排放量 消耗量(t) 种类 量(tC/GJ) (%) 算因子 (tCO₂)(GJ/t)Α В C D E F=A*B*C*D*E数值 123.11 42.652 0.0202 44/12 98 381.14

表 9 原材料运输碳足迹核算数据

4.3.2 生产过程中形成的碳足迹核算

(1) 净购入电力隐含的排放

净购入使用的电力所对应的生产活动的 CO₂ 排放量按下述公示计算:

 $E_{~\text{\tiny θ}} = AD_{~\text{\tiny θ}} * EF_{~\text{\tiny θ}}$

 $E_{\mathfrak{e}}$: 为净购入使用的电力所对应的生产活动的 CO_2 排放,单位为吨 (tCO_2)

AD e: 核算期内净购入的电量,单位为兆瓦时(MWh);

EF #: 电力的 CO₂ 排放因子,单位为 tCO₂/MWh;

公司 2022 年度外购电力 1610.254 兆瓦时,按上述公式,带入数据核算结果如下表:

77 - 17 /17 / 13 / 14 / 17 / 17 / 17 / 17 / 17 / 17 / 17					
报告	年度: 2022				
	电力消耗量	电力排放因子	排放量		
种类	(MWh)	(tCO ₂ /MWh)	(tCO ₂)		
	A	В	C=A*B		
电力(华东地区电网)	1610.254	0.5703	918.33		

表 10 净购入电力隐含的排放数据表

(2) 天然气燃烧的排放

E 天然气=NCV₁*FC₁*CC₁*OF₁*44/12

 $E_{\pi \& g}$: 核算期内天然气燃烧产生的 CO_2 排放量,单位为吨(tCO_2)

NCV₁: 核算期内天然气平均低位发热量,单位为 GJ/万 Nm³;

FC₁: 核算期内天然气消耗量,单位为万 Nm³

CC₁: 天然气的单位热值含碳量,单位为tC/GJ;

OF₁: 天然气的碳氧化率,单位为%;

44/12: 二氧化碳与碳的数量换算

公司 2022 年度消耗天然气 107.69 万 Nm³, 按上述公式, 带入数据核算结果如下表:

种类	消耗量 (万 Nm³)	低位发热量 (GJ/万 Nm³)	单位热值含碳 量(tC/GJ)	碳氧化率 (%)	CO ₂ /C 折 算因子	排放量 (tCO ₂)
	A	В	C	D	E	F=A*B*C*D*E
数值	107. 69	389. 31	0. 0153	99	44/12	2328.46

表 11 天然气燃烧的排放数据表

4.3.3 产品分销形成的碳足迹核算

产品分销主要是柴油消耗,参照上述公式计算,总排放量为 99tCO₂。

4.3.4 碳足迹核算量汇总

公司产品碳足迹核算最终数据汇总如下表所示:

报告主体名称	年度: 2022			
碳足迹项目	计算要素	碳足迹计算结果	占比	
W. C. C. V. C.	月开安东	tCO ₂ /a	Пи	
原辅材料运输碳足迹	运输消耗	381.14	10.23%	
生产过程中的碳足迹	电力消耗	918.33	24.64%	
土)以往中的恢定处	天然气消耗	2328.46	62.48%	
产品分销形成的碳足迹	运输燃料消耗	99	2.66%	
产品碳足迹	3726.93	100%		
产品碳足迹排	3.33tCO ₂ /吨原酒			

表 12 公司产品碳足迹核算汇总表

5.结果分析与评价

5.1 碳足迹构成及影响因素分析

根据计算结果可知公司产品碳足迹的构成要素主要包括 4 部分:

- (1) 原材料在运输过程中的碳足迹;
- (2) 生产过程中因电能使用的间接碳足迹;
- (3) 生产过程中天然气作为燃料燃烧的碳足迹:
- (4) 产品分销在运输过程中的碳足迹。

根据计算结果可知,公司产品碳足迹中生产过程中的电力消耗碳足迹占 比高达 24.64%,天然气消耗的碳足迹占比为 62.48%,因此,生产过程中的 电力和天然气消耗是影响产品碳足迹的关键要素,也是降低产品碳足迹的关 键环节。

5.2 产品碳足迹改善措施

通过对产品碳足迹构成进行分析,可以看出生产电力消耗、生产天然气消耗和运输燃料消耗是产品碳足迹的主要贡献者,而这也恰恰揭示出了其潜在的减排环节。

(1)提高产品生产中的电效。通过设备和系统的节能改造,优化工艺 流程,降低生产过程中的电耗。采用国内先进的工艺技术、采用达到国家能 效高的耗能设备、对生产中的余热余压余能进行回收利用均是切实可行的方法。

- (2)加强生产全过程的管理。优良的生产管理,可以有效降低生产过程中的电耗和天然气消耗,减少能源使用,降低碳排放。
- (3)降低原材料在运输过程中的能源消耗,在满足生产需求的前提下, 招投标时优先考虑近距离供货方,同时加强车辆运输中的管理,合理制定发 货时间、频次和路线,尽量避免空载或货载率低的无效运输,从而减少运输 能耗,减少运输碳足迹。